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The influence of chaos on tunneling in the quantum phase space of the harmonically driven pendulum
is studied herein. We analyze the avoided level crossing between a quasienergy state associated with the
chaotic part of the phase space and a member of the nearly degenerate doublet localized on the sym-
metric Kolmogorov-Arnold-Moser (KAM) islands. As a result of the interaction the quasienergy states
“exchange” their structure. The initially chaotic state evolves into the regular one and vice versa. This
interchange significantly affects dynamical tunneling of wave packets centered on the KAM islands.

PACS number(s): 05.45.+b, 03.65.—w, 73.40.Gk

Despite significant recent progress relatively little is
known about the effects of chaos on a purely quantum
mechanical process such as tunneling. Herein we adopt a
broader definition of tunneling, which comprises not only
the conventional penetration of a classically insurmount-
able potential barrier but also the quantum motion be-
tween classically disconnected phase space nonlinear res-
onances [Kolmogorov-Arnold-Moser (KAM) islands].
The latter phenomenon was investigated by Davis and
Heller as early as 1981 and is frequently referred to as
dynamical tunneling [1].

The interplay between chaos and tunneling was the
subject of the recent work by Lin and Ballentine [2,3]
who investigated a monochromatically driven double-
well potential. Lin and Ballentine show numerically that
the tunneling between the KAM islands is 10* faster than
that for the undriven case. Peres [4] pointed out that the
observed tunneling is due to a dynamical symmetry of the
Hamiltonian, which remains invariant under combined
spatial reflection and time translation. Consequently, the
eigenfunctions of the corresponding Floquet operator
may be classified into even and odd states with respect to
a generalized parity operator. In further investigations,
Plata and Llorente [5] demonstrated that the tunneling
rate is determined by the splitting of a pair of Floquet
states localized on two stability regions. Utermann, Dit-
trich, and Hanggi [6] found very strong correlation be-
tween the level splitting and the overlap of the Husimi
distribution of the doublet states with the chaotic layer.
The behavior of the splitting of quasidegenerate doublets
has also been the subject of a recent paper by Bohigas,
Tomsovic, and Ullmo [7]. Using the autonomous system
of two coupled quartic oscillators, they demonstrated
that tunneling is strongly affected by classical integrabili-
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ty of the Hamiltonian system. Beyond the quasi-
integrable regime, the splitting becomes extremely sensi-
tive to variations of the external parameter. To quantify
the observed phenomenon they considered a three-level
model, which describes the interaction of the chaotic
eigenstate with the quasidegenerate doublet. They con-
cluded that ‘“‘the major consequence of chaos is enhanced
tunneling between islands by allowing transport across
regions in phase space.” The above scenario is valid only
for sufficiently small coupling between the regular dou-
blet and the chaotic state; a condition that may be
satisfied far enough from the center of the avoided cross-
ing. In the neighborhood close to the center of the cross-
ing, quantum dynamics is very different. The purpose of
this paper is to show that this difference is associated
with the interchange of the structure of the interacting
states—a generic quantum property of a two-level system
[8].

As our model system we choose the driven pendulum
(9], H=p?/(2u)+u(1+cosq)—pyq cos({t), where y is
the peak amplitude of the driving force and (1 is its fre-
quency. In all classical and quantum calculations dis-
cussed herein Q=2 and p=5. Performing the trivial
scaling of the angular momentum by the parameter p,
p'=p /u the equations of motion generated by the above
Hamiltonian may be expressed in a form independent of
. In the quantum domain, this scaling parameter plays
a much more significant role since it may be interpreted
as the inverse of the “effective” Planck’s constant. The
angle g varies between 0 and 27 contrary to the conven-
tional range [ —,7]. This modification was introduced
to facilitate quantum calculations. The Hamiltonian
remains invariant under the following set of symmetry
operations: g— —gq, t—t+m/Q. This dynamical sym-
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metry is identical to that of the driven double-well poten-
tial and we expect that the generic properties of the
driven pendulum holds true for a large class of bounded
Hamiltonian systems exhibiting this kind of symmetry.

Employing the p- ) gauge, the solution of the time-
dependent Schrodinger equation corresponding to H may
be formally written as

l(2)) =expr —ifor li[ﬁ— AP

lp0)), (1)

+pu(1+cosq) ’dt'

where 4(t)=—puy sin(Q2¢)/Q and Planck’s constant was
set to unity. In the most straightforward approach, the
wave function is expanded in the elgenba31s of the angu-
lar momentum operator p: |§, ) =exp(ing)/V2r with
coefficients c,(z). Furthermore, the time dependence of
the vector potentlal A(1) is approximated by [10]

sm(ﬂt) ES(t

with Az =27 /(QL ), where L is the number of integration
steps taken per period T of the driving force. Then the
integration in (1) may be carried out analytically and the
vector of the expansion coefficients ¢(z; +At) at time
t; + At may be obtained by the successive multiplication
of vector T(#;) at time ¢, by unitary matrices:
c(t, +At)=UQVQ " '(t,). U and V are both diagonal
matrices with U, , =exp[—iAt{n?/(2u)+ny sin(Qt;)/
Q}] and V,,=exp[—iAw,], v, are the eigenvalues
of the matrix representation N of the operator u cosg in
the eigenbasis of the operator p, and Q is a unitary matrix
that transforms N into diagonal form (N=QVQ ~!).

In Fig. 1 we present a small portion of the Floquet
spectrum [11] of the driven pendulum. Note that the
Floquet states may.be classified into states of even and
odd parity with respect to the previously mentioned gen-
eralized parity transformation. One can see from Fig. 1
that a typical double cone structure of the avoided level
crossing originates as a result of interaction between
quasienergy state 4 and a member of nearly degenerate
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FIG. 1. The small portion of the Floquet spectrum of the
driven pendulum shows the avoided crossing between the state
A and a member of doublet B.

doublet B, both having the same symmetry. The other
member of the doublet, labeled in Fig. 1 as C, has a
dynamical symmetry opposite those of states 4 and B. If
one approximates the observed crossing with the help of
a three-level model, then the selection rules reduce the
problem to the interaction between states 4 and B.

To elucidate the nature of the avoided level crossing
displayed in Fig. 1, let us examine the connection be-
tween the classical phase space portrait of the driven pen-
dulum and the structure of the Floquet states 4, B, and
C. Figure 2 shows the Poincaré surface of section calcu-
lated for y =4.92 (cf. Fig. 1). Note that the KAM tori
corresponding to oscillations around the elliptic fixed
point (0,0) of the unperturbed Hamiltonian have been
destroyed and now are part of a chaotic sea. Even for
such a large value of perturbation strength, there are still
high-order nonlinear resonances immersed in the chaotic
sea. The regular part of the phase space is delineated by
the noticeably deformed KAM tori found at |p|=4.2.
With the growing absolute value of the angular momen-
tum, tori become less distorted and closely resemble those
of unperturbed rotations. In Fig. 3 we present the con-
tour plots of the Husimi distributions [12,13] of the
quasienergy states 4, B, and C obtained for the same
value of the amplitude ¥ as that used in Fig. 2. Six con-
tour lines uniformly spaced between zero and the max-
imum value were used. Note that each contour plot was
superimposed with the selected tori taken from Fig. 2
(heavy dots). For clarity, the symmetric counterparts of
these tori have not been shown. The “chaotic” character
of the Floquet state A is clearly seen in Fig. 3(a). Its
Husimi distribution spreads all over the chaotic sea and
only slightly overlaps the regular part of the phase space.
The interpretation of this overlap shall be given subse-
quently. The nature of the other states B and C displayed
in Figs. 3(b) and 3(c) is utterly different. We refer to these
states as intermediate since they are localized on the bor-
der of the regular and stochastic component of the phase
space. This type of quasienergy state is common for
Hamiltonian systems with mixed phase spaces. Although
the distributions from Figs. 3(b) and 3(c) are similar to
each other, as one would expect from the states that form
the nearly degenerate doublet, state B clearly penetrates

1

FIG. 2. Poincaré surface of section for the driven pendulum
with Q=2, p=5, and y=4.92. Momentum was scaled by the
parameter u.
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the chaotic part of the phase space, whereas C does not.
We have already mentioned that the repulsion between
states 4 and B may be well approximated by a simple
two-level model. The contamination of the Husimi distri-
bution of state B in Fig. 3(b) by a chaotic component is a
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FIG. 3. Husimi representation of the Floquet states shown in
Fig. 1. Momentum was scaled by the parameter u. The model
parameters are the same as in Fig. 2. The contour plots were
superimposed with selected tori from Fig. 2. (a) corresponds to
quasienergy state A, (b) to B, and (c) to C.

precursor of the complete exchange of the structure be-
tween initially regular (localized) state B and originally
chaotic (delocalized) state 4. This purely quantum
mechanical process, characteristic of a two-level system
(8], is elucidated in Fig. 4. In this figure, the expansion of
all three states in the basis of eigenfunction |¢, ) of the
angular momentum operator are plotted for five values of
the amplitude y chosen from the interval [4.92,4.96].
The inspection of Fig. 1 shows that this interval
comprises the main part of the avoided level crossing. In
all the graphs in Fig. 4, the quantum number » varies be-
tween —30 and 30, the range of occupation probability is
[0,0.2]. From the first panel in Fig. 4, which corresponds
to the amplitude y =4.92, it is apparent that the repul-
sion has already influenced the structure of both states A4
and B. The latter one is still similar to its doublet coun-
terpart C (we have already pointed out this fact during
the analysis of Fig. 3), but now populates the basis states
that span the initially chaotic state 4. On the other
hand, the overlap of state A, initially spread in the classi-
cally stochastic region, with the regular part of the phase
space is now easily understood as a simple quantum prop-
erty of a system of two interacting levels [8].

The tunneling in phase space produced by the nearly
degenerate doublet is destroyed by this same interaction
mechanism. We can see in Fig. 4 that with the growing
perturbation the mixing of states A and B becomes more
strongly pronounced, so that at ¥ =4.94 they look very
much alike. While bearing some resemblance to state C,
which as expected from the symmetry analysis is not
affected by the crossing and slowly varies in the range of
perturbation shown in Fig. 1, they are delocalized in the
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FIG. 4. Basis expansion of Floquet states 4, B, and C plotted
for five values of the amplitude y. In all graphs, the quantum
number n varies between — 30 and 30. The range of occupation
probability is [0,0.2].
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classically chaotic part of the phase space. At this point
the linear combinations of states B and C no longer yield
a wave packet localized in the symmetric parts of the
phase space, the property which is the hallmark of phase
space tunneling. We emphasize that herein we have fo-
cused our attention on the tunneling produced by the
members of the nearly degenerate doublet. In a forth-
coming paper [14], we shall show how the avoided level
crossing described here gives rise to perfectly periodic
dynamical tunneling involving three quasienergy states
(the regular doublet and the chaotic state). We have
found this type of tunneling to be particularly robust
against any symmetry breaking perturbation.

If the amplitude of the driving force is further in-
creased, the ‘“rotation” of quasienergy states 4 and B
proceeds and, at y=4.96, they have completely ex-
changed their structures (cf. the first and the last panel in
Fig. 4). The initially chaotic state 4 becomes fairly regu-
lar and the initially regular state B becomes chaotic.
From Fig. 1 we can infer that with the growing perturba-
tion the splitting between states 4 and C steadily de-
creases until the nearly degenerate doublet is made up of
states A and C rather than B and C.

Now let us assess the role of classical chaos in the
phenomenon discussed above. The initially chaotic state
A originates in the part of the phase space which for
small perturbation corresponds to oscillations of the non-
linear pendulum. With the growing perturbation, the
original structure of quasienergy state A4 (its excellent
semiclassical approximation may be obtained with the
help of Einstein-Brillouin-Kramer quantization rules ex-
tended for the periodically perturbed systems by Breuer
and Holthaus [15]) is destroyed and the state gradually
delocalizes. The avoided level crossing does not take
place until the spreading reaches the basis states, which
span the nearly degenerate doublet. The KAM tori have

been shown to persist in the quantum phase space as
dynamical barriers, which inhibit wave functions from
exploring classically forbidden regions of phase space
[16,17]. For sufficiently small values of Planck’s con-
stant, the properties of the classical phase space are clear-
ly reflected in the structure of the Floquet states. The
kind of avoided level crossing displayed in Fig. 1 may be
observed for sufficiently strong interaction between the
chaotic state (or intermediate state, the case discussed in
a forthcoming paper [14]) and the member of quasidegen-
erate doublet. This kind of interaction occurs only if the
phase space representation of the doublet states are not
entirely enclosed by the KAM tori and consequently are
affected by the presence of the chaotic sea. We have not
been able to observe any detectable change in a level
splitting when a third regular state crosses the path of a
doublet. The latter behavior was found by Bohigas, Tom-
sovic, and Ullmo in the autonomous system of coupled
quartic oscillators [7]. Thus, we can see that chaos
influences all levels involved in the avoided level crossing.
We think that the term chaos induced avoided level cross-
ings or chaotic avoided level crossings amply describes the
nature of the discussed phenomenon.

Note added. After completion of this paper we became
aware that a related phenomenon was found in the stan-
dard quantum map by G. Casati, B. Chirikov, G. Fusina,
and F. Izrailev (unpublished).
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